5^2x-6=1/625

Simple and best practice solution for 5^2x-6=1/625 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5^2x-6=1/625 equation:



5^2x-6=1/625
We move all terms to the left:
5^2x-6-(1/625)=0
We add all the numbers together, and all the variables
5^2x-6-(+1/625)=0
We get rid of parentheses
5^2x-6-1/625=0
We multiply all the terms by the denominator
5^2x*625-1-6*625=0
We add all the numbers together, and all the variables
5^2x*625-3751=0
Wy multiply elements
3125x^2-3751=0
a = 3125; b = 0; c = -3751;
Δ = b2-4ac
Δ = 02-4·3125·(-3751)
Δ = 46887500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{46887500}=\sqrt{302500*155}=\sqrt{302500}*\sqrt{155}=550\sqrt{155}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-550\sqrt{155}}{2*3125}=\frac{0-550\sqrt{155}}{6250} =-\frac{550\sqrt{155}}{6250} =-\frac{11\sqrt{155}}{125} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+550\sqrt{155}}{2*3125}=\frac{0+550\sqrt{155}}{6250} =\frac{550\sqrt{155}}{6250} =\frac{11\sqrt{155}}{125} $

See similar equations:

| 20x–15–(6x+13)=9x+37–(5x–5) | | -23-x=10+2x | | 22=(60/y)+2 | | -4-92=5x+34 | | 4n-8=`12 | | 893x-20=20 | | 3.5m=21. | | -12-x=6-3x | | -9-5x=-4x+4 | | 3x*x-15x=0 | | 2(3w+2)/4=-6 | | 4y^2-y-14=0 | | 6x-13=2x+27 | | 3x*x+-15x=0 | | 3(5x+4)−20=2(x+3) | | x+2.75x=7425 | | -22-2x=5x+34 | | 65x=2/12 | | x+1.5x=5600 | | 5(1)+4y=17 | | -3x*x+15x=0 | | 2.5x=5600 | | x+2.75=7425 | | -2x-20=32-6x | | 150+5x=20x | | 6(8x+5)=28 | | 3(28+5)=2x+20 | | x/6-x/3=7-x/4 | | x-40=38-5x | | 3x/2-x-10/8=x+1/4 | | 3(x-7)+9=2x-3 | | 7x=153x |

Equations solver categories